If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+64X-567=0
a = 1; b = 64; c = -567;
Δ = b2-4ac
Δ = 642-4·1·(-567)
Δ = 6364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6364}=\sqrt{4*1591}=\sqrt{4}*\sqrt{1591}=2\sqrt{1591}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-2\sqrt{1591}}{2*1}=\frac{-64-2\sqrt{1591}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+2\sqrt{1591}}{2*1}=\frac{-64+2\sqrt{1591}}{2} $
| 12+15x=2x+4+13x | | 6b-44=2b/3+4 | | 13x–8=5x+2 | | 3×|2x-2|=(-10)^2-82 | | 2u=6/5 | | -5x-7=4x+83 | | 2y/3+6=5y-85 | | 24=1.6d | | 5t-2t=18 | | 50=0.5(50-x) | | 2k/3+5=4K-55 | | 12+15x=2x+4+13 | | -6j+4=-38 | | 3x+10-90+x=180 | | (4x+19/2)=2 | | 3y/4=3y-27 | | 3q-20=-5 | | 2y/3=6y-96 | | -18p-17p=12 | | 3n/4=3n-54 | | 8x-9=5+8x | | 0,5q^2(q-6)+2.5(1+q)=0 | | 3r-109=5r/6+8 | | 2(-7x+9)/4=12x | | 3e-42=2e/3 | | 6q-55=2q/3+9 | | -10=0.4k | | 3d/4=5d-119 | | 9y+7=14y-13 | | 2x/3+6=4x-54 | | 5y-111=2y/3+6 | | -20=-0.4k |